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Abstract

The new idea of group defense as recently introduced by the au-

thor in the context of two interacting populations is in this paper

applied to communities subject also to a disease. The system is for-

mulated with the bare minimum of interactions among all the pop-

ulations involved in order to highlight the effects of the nonlinearity

describing the defense mechanism. A key parameter identified in the

purely demographic model, which completely describes its outcomes,

is seen here to have an important role also, in that its dropping be-

low a threshold prevents the disease from invading the environment

and causes the healthy prey and predators to coexist via persistent

oscillations.

1 Introduction

Recently the author has proposed new models for population interactions,
in the joint papers [2, 3]. In spite of the fact that only two-dimensional
dynamical systems are considered, there is a novelty in the basic idea that
has led to the formulation of such models. Since the early works of Lotka
and Volterra [15, 10] the basic assumption in population theory considers
always one to one interactions between prey and predators, assumed to be
free to wander about in the environment and therefore subject to random
encounters among isolated individuals of each population. Instead in [2, 3]

∗This work has been performed while the author was visiting the Max Planck Institut

für Mathematik in Bonn. The use of the facilities is gratefully acknowledged.
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a new idea of group defense has been introduced, quite different from earlier
ones, see for instance [7]. The key point here is that prey, identified for
instance in the large herbivores populating the savannas, gather together
in huge herds, with generally the strongest individuals on the border and
the weakest being concentrated in the middle of the bunch. This has the
consequence that the capture of a prey by a successful predator’s attack
occurs mainly on the boundary, involving therefore mostly the individuals
that occupy the outermost positions in the herd.

This situation is mathematically achieved in the model by observing that
if a population spreads in a two-dimensional domain, the number of individu-
als on its boundary will be proportional to the length of the perimeter of the
area occupied, and therefore proportional to the square root of the popula-
tion density. The consequences of this assumption are that in a such a kind
of predator-prey model a key parameter can be identified which describes
completely the ensuing system dynamics.

In this paper we extend these ideas to ecoepidemic systems. The latter
describe demographic interactions among populations in which also a disease
spreads by contact. They originate from the research in epidemiology which
started to consider varying size populations, [5, 8, 12]. Since the constraint of
a fixed population implicit in the classical epidemic models was then removed,
the natural next step consisted in allowing a disease also among interacting
populations, that therefore do not have constant values, see for instance [14].
Note that predator-prey interactions are not the only possible models, as also
symbiosis and competition can be considered, [16, 4, 1]. For a more com-
prehensive account of ecoepidemic models in these contexts, see [11]. More
specifically, here we consider the prey population, which grazes together in
herds, similarly as to what done in [2, 3], but in which an epidemic occurs. In
the environment are also present predators, who maintain an individualistic
behavior. We differentiate the way prey wander about, assuming as stated
that they stick together, when sound. However, the diseased animals are
assumed to be left behind by the herd, or to abandon it voluntarily. This
habit is common for instance among elephants. This difference in behavior
entails also a different description of interactions with predators. In fact for
the sick prey, the latter are on a one to one basis as in the classical models.
Therefore, they are modeled via the standard mass action term.

The paper is organized as follows. We present the model in the next
Section, then we analyse its equilibria. Their stability is studied in Section
4. We then present the results of numerical simulations, and a final discussion
concludes the paper.
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2 The model

We consider a “minimal” model for species interactions, subject also to a
disease spreading in this case among the prey. This means that in the dy-
namical system describing the structure of the ecosystem, we account only
for the bare fundamental relationships existing among the populations, in
order to better elucidate the role of the “group defense” assumption we are
making. In this way it will better be possible to study and understand its
consequences on the ecosystem behavior.

Specifically, we ignore prey subpopulations intraspecific competition, as-
suming namely that only sound individuals would compete for resources, and
we take the disease to be of type SI, i.e. there is no recovery from it, namely
individuals, once infected, keep the disease for their life. We do not consider
either more realistic descriptions of the feeding, like the Holling type II usu-
ally proposed nowadays in ecoepidemic literature. This because the Holling
type II interaction is in general the key nonlinear element in a dynamical
system that makes it oscillate. Its presence would then obscure the influence
of, or intermingle with, the other square root nonlinearity we introduce.

Consider therefore the following system

dR̂

dτ
= rR̂

(
1 − R̂

K

)
− λ̂R̂Î − â

√
R̂F̂ , (1)

dÎ

dτ
= Î

(
λ̂R̂ − b̂F̂ − µ̂

)
,

dF̂

dτ
= F̂

(
âê
√

R̂ + b̂êÎ − m̂
)

.

The fundamental feature that distinguishes it from classical predator-prey
interactions, and also from earlier models describing population interactions
subject to an epidemics spreading in the environment, is the last term of
the first equation, which has a counterpart in the third equation as well. It
corresponds to the fact that among populations that gather together to graze,
it is the outermost individuals who bear the burden of suffering most from
the attacks of possible predators from the outside. Hunting therefore occurs
mostly on the perimeter of sound herd and it is modelled via this square
root term. The remaining terms in the first equation describe logistic growth
of the prey, in which as stated above only sound individuals contribute,
and the infection mechanism, described via a simple mass action law. The
second equation describes the infected evolution, who have an individualistic
behavior, being isolated from the rest of their consimilar. Therefore, they
are hunted as in the classical predator-prey models via a mass action term.
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Infected prey are recruited into this class through successful contact between
a susceptible and an infected, and they are subject to hunting by predators,
as mentioned. Here µ̂ represents natural plus disease-related mortality. The
third equation contains the dynamics of the predators, who in absence of
prey starve, with natural mortality m̂. The first two terms instead account
for the reward obtained by hunting sound and infected prey respectively.

3 Some preliminary analysis

The system (1) has a singularity in the Jacobian, stemming from the square
root term. In order to better analyze it, we use a singularity removal device.
Namely, let P̂ 2 = R̂, then assuming P̂ 6= 0, we have

dP̂

dτ
=

r

2
P̂

(
1 − P̂ 2

K

)
− âF̂ − λ̂P̂ Î (2)

dÎ

dτ
= Î

(
λ̂P̂ 2 − b̂F̂ − µ̂

)

dF̂

dτ
= F̂

(
âêP̂ + b̂êÎ − m̂

)

We now proceed to the adimensionalization step. Using P (t) = αP̂ (τ),

I(t) = βÎ(τ), F (t) = γF̂ (τ), t = δτ and then setting

α2K = 1,
r

2δ
= 1,

λ̂

α2δ
=

λ̂

2βδ
,

b̂

γδ
=

b̂

βδ
(3)

we find

α =
1√
K

, δ =
r

2
, β = γ =

1

2K
.

We then get the rescaled system

dP

dt
= P

(
1 − P 2

)
− aF − λPI (4)

dI

dt
= I

(
λP 2 − bF − µ

)

dF

dt
= F [e(aP + bI) − m]

with

a = 2
â

r

√
K, λ = 2λ̂

K

r
, b = 4

b̂

r
K, µ =

2

r
µ̂, m =

2

r
m̂.

4



At this point we need to look back at the adimensionalization used in
[3]. Over there, it was possible to choose a = 1, a choice that we do not
follow here. In order to be able to use the former results in our context for
comparison purposes, we discuss briefly how the results of [3] change if we
use a similar adimensionalization as above. In fact, the predator-prey model
of [3] is obtained from (2) by setting λ̂ = 0, b̂ = 0, µ̂ = 0. In this way, using
again the first two of (3) supplemented by

aα

2γδ
=

a

αδ

we obtain once more the simplified model (4) in which λ = 0, b = 0, µ = 0. At
this point, however, in the former rescaling [3] a new fundamental parameter
is introduced, ρ = m/e. In this context, however, its definition must be
changed to

ρ =
m

ae
. (5)

This change however, luckily, does not imply relevant changes in the sub-
sequent analysis. Namely the results of [3] still hold for the simplified two-
dimensional version of (4) with this modified definition of ρ. In summary,
they are as follows: for ρ > 1 the system settles to the predator-free equilib-
rium, for 3−1/2 < ρ < 1 the system shows coexistence of prey and predators
at a stable equilibrium, for 0 < ρ < 3−1/2 predators and prey coexist, but
through persistent oscillations. These results will be referred to in what
follows.

3.1 Boundedness

The following argument is close to the one found in the literature, see for
instance [9, 13]. Define then the quantity T = 1

2
P 2 + I + F . Differentiating

and using (4), we have for an arbitrary 0 < η < min{m,µ}
dT

dt
+ ηT ≤ Φ(P ), Φ(P ) = P 2[1 + η − P 2].

The quartic attains the maximum value M = 1

4
(1 + η)2 at P = 1

2

√
2(1 + η),

so that from the differential inequality Ṫ +ηT ≤ M it follows T (t) ≤ Mη−1+ǫ
for any t ≥ 0, with an arbitrary ǫ > 0. This result establishes boundedness
for each population of the system.

3.2 Equilibria

The equilibria are the origin E0, the sound prey-only point E1 ≡ (1, 0, 0),
the disease-free one E2 ≡ (P2, 0, F2), the predator-free one E3 ≡ (P3, I3, 0)
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and the coexistence one E4 ≡ (P4, I4, F4). Explicitly, their components are

P2 =
m

ae
= ρ, F2 =

m

a2e

(
1 − m2

a2e2

)
=

ρ

a

(
1 − ρ2

)
, (6)

P3 =

√
µ

λ
, I3 =

1

λ

(
1 − µ

λ

)
, (7)

with feasibility conditions for E2 and E3 are respectively

Rp =
ae

m
=

1

ρ
≥ 1, (8)

and

R0 =
λ

µ
≥ 1. (9)

For the coexistence equilibrium we have

F4 =
1

b

(
λP 2

4 − µ
)
, I4 =

1

be
(m − aeP4) =

a

b
(ρ − P4)

and P4 is a root of the cubic

Ψ(P ) ≡ P 3 +

(
λm

be
− 1

)
P 2 − a

b
µ = 0.

Clearly from Descartes’ rule it has one positive root, giving a feasible equi-
librium, provided that

m

ae
= ρ ≥ P4 ≥

√
µ

λ
. (10)

It is also easily seen that differentiating, Ψ′(P ) = 0 for the two values

P̃± = ± 1√
3

√
be − λm

be

which exist for be ≥ λm. But in such case we also find Ψ′′(P̃+) > 0 so

that P̃+ is a minimum. Combining this result with Ψ(0) < 0, it is therefore
apparent that the case of three positive roots cannot occur. Ψ(P ) admits
always only one positive root, i.e. there is always one possible coexistence
equilibrium E4, feasible when the conditions (10) are satisfied. In term of
the model parameters, (10) becomes explicitly

ρ2

(
aµ

bρ3
− 1

)
=

m2

a2e2

(
a4e3µ

bm3
− 1

)
≤ λm

be
− 1 ≤ µ

(
a

b

√
λ

µ
− 1

λ

)
.
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4 Stability

The Jacobian of the system 4 is

J =




1 − 3P 2 − λI −λP −a
2λIP λP 2 − bF − µ −bI
aeF beF −m + e(aP + bI)


 (11)

Evaluating it at E0 we find the eigenvalues 1, −m, −µ, so that the origin
is unstable. At E1 we find instead −2, λ − µ, ae − m, for which we get
conditional stability, namely for, recall the definitions (8) and (9),

Rp < 1, R0 < 1. (12)

The former coupled with (8) shows that there is a transcritical bifurcation
when E2 becomes feasible collides with the stable equilibrium E1, the latter
losing then its stability. A similar result holds for E3 and E1, by using the
second (12) together with (9). Let us now define the quantity

R∗ = max {Rp,R0} . (13)

It follows that if R∗ > 1, in the system at least one of either the disease or
the predators will establish itself. More specifically, if Rp > 1 the predators
could invade the environment, while for R0 it is the disease that can become
endemic.

At E2 one eigenvalue of (11) explicitly is λP 2
2 −bF2−µ and the remaining

two are the roots of a quadratic, coming from a 2 by 2 minor J̃ of (11), for
which the stability conditions, since aeP2−m = 0 here, require the positivity
of the quantities

−tr(J̃) = 3P 2

2 − 1 > 0, det(J̃) = a2eF2 > 0.

Thus the latter is verified and the former gives

ρ >
1√
3
. (14)

In addition to (14), stability of E2 is thus regulated by the first eigenvalue. By
performing some algebraic manipulations on the latter, we can now introduce
the quantity

RA
0 = max

{
m2(a2eλ + bm)

a2e2(a2eµ + bm)
,

ae√
3m

}
= max

{
ρ2

(aλ + bρ)

(aµ + bρ)
,

1√
3ρ

}
. (15)
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If RA
0 > 1, it follows that E2 is unstable and provided also that R∗ > 1, the

disease becomes endemic in the ecosystem.
Note further that for the above condition on the trace (14) reducing to

an equality, namely for

ρ =
1√
3
. (16)

we have a supercritical Hopf bifurcation, since in such case two purely imag-
inary roots of the quadratic appear, giving purely imaginary eigenvalues.
Therefore the equilibrium becomes unstable and a stable limit cycle appears
around it.

At equilibrium E3, one eigenvalue is e(aP3 + bI3) − m and the other two

again come from a suitable minor Ĵ of (11) for which the Routh-Hurwitz
conditions simplify again to give

−tr(Ĵ) = 2
µ

λ
> 0, det(Ĵ) = 2λ2P 2

3 I3 > 0

and are therefore clearly satisfied. Thus stability is ensured by e(aP3+bI3) <
m or, explicitly, √

µ

λ
+

b

aλ

(
1 − µ

λ

)
< ρ. (17)

Introducing the quantity

RB
0 =

λ2m + beµ

λe(a
√

λµ + b)
(18)

stability can be recast in the form RB
0 < 1. If RB

0 > 1 and at the same time
R∗ > 1 it follows therefore that the predators invade the environment. Also,
here no Hopf bifurcation can arise since −tr(Ĵ) > 0 always.

We finally investigate the coexistence equilibrium E4. In the Jacobian
(11) the elements J22 and J33 now vanish. Letting M2(J(P4)) denote the
sum of the principal minors of order 2 of (11), for which we have

M2(J(P4)) = b2eI4F4 + a2eF4 + 2λ2P 2

4 I4,

the characteristic equation at E4 can be written as the cubic

σ3 − tr(J(P4))σ
2 + M2(J(P4))σ − det(J(P4)) = 0.

The Routh-Hurwitz conditions for stability give the three following inequal-
ities

−tr(J(P4)) = 3P 2

4 + λI4 − 1 > 0 (19)

− det(J(P4)) > 0 (20)

tr(J(P4))M2(J(P4)) + det(J(P4)) > 0 (21)
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Studying these inequalities, for the equation associated with (19) we find
the roots

P±

4 =
λa

6b
± 1

6

√
λ2a2

b2
− 12

(
λm

be
− 1

)

so that the solution interval for the inequality (19) for the two alternative
cases λm > be and λm < be is respectively

P4 ∈ (0, P−

4 ) ∪ (P+

4 , +∞); P4 ∈ (P+

4 , +∞). (22)

For (20) we are led to

0 > det(J(P4)) = beF4I4

[
b(1 − 3P 2

4 − λI4) − aλP4

]
,

which leads to another quadratic inequality,

3beP 2

4 + λm − be > 0.

This condition is automatically ensured if be < λm. Else, the roots of the
associated equation are

P4± = ±
√

1 − λm

3be

and in such case (20) holds for P > P4+.
The study of (21) is much more involved. The inequality involves a quintic

polynomial in P4, but it can be recast into the following form, involving
respectively two rational functions,

L(P4) < Q(P4),

with

L(P4) = be +
a2e

bI4

+ 2
λ2P 2

4

bF4

, Q(P4) =
3beP 2

4 + λm − be

1 − 3P 2
4 + λI4

.

Now L has two vertical asymptotes at P a
4 = ρ and at P b

4 =
√

λ
µ
. Depending

on their respective positions, the function can have different behaviors. When
P a

4 < P b
4 , it raises from the positive value L(0) = a2

m
+ b

e
to infinity, then in

between the asymptotes it raises from −∞ up to a maximum, which may
or may not lie above the P4 axis, and goes down to −∞ again; beyond this
second vertical asymptote, it raises then again from −∞ up to the horizontal
asymptote b

e
+ 2λ. For P a

4 < P b
4 instead, it moves from L(0) > 0 to −∞, the

vertical asymptote P b
4 , then on its right it goes down from +∞ to a minimum

and then it raises up to +∞ at the other asymptote P a
4 ; on the right of this

it raises up from −∞ to the same horizontal asymptote.
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Either one of these curves must be intersected with Q, which is another
rational function tending to the horizontal asymptote at height −be as P4 →
∞. Further, Q(0) = λm − be, for which it can have both signs, and it has
the vertical asymptotes at

P̂+

4 =
1

6be

{
−aeλ +

[
a2e2λ2 + 12be(be + λm)

]}
.

From the point at height λm−be
λm+be

on the vertical axis Q raises up to +∞ at

P̂+

4 , then it lies below the horizontal asymptote −be.
Seeking the solutions of the inequality L < Q gives four fundamental

cases, depending on whether the inequalities be > λm and ρ = m
ae

<
√

λ
µ

are

satisfied or not. One has to account in each also the relative positions of the
vertical asymptotes of the two rational functions. In several such situations
other various possibilities arise, giving many different possible cases. In all of
these cases, intervals in which (21) is satisfied can be shown to exist, generally
near the vertical asymptotes. These must be combined with the solutions
of (19) and (20) to give ranges for the position of P4 for which the Routh-
Hurwitz conditions hold, ensuring stability for the coexistence equilibrium.
This result motivates the simulations of the next Section, showing that indeed
this equilibrium can be attained.

Furthermore, Hopf bifurcations would arise when the cubic has two purely
imaginary roots, a condition which is equivalent to having the inequality
(21) become an equality, therefore this holds at the intersections of the two
rational functions L and Q. The nature of the bifurcation is established from
the sign of the remaining root of the cubic, given by the coefficient of the
square term, namely −tr(J(P4)).

5 Simulations

Assume to have a value of ρ that exceeds 1. Figure 1 contains the simulation
result giving equilibrium E1 for the disease-free system. From the sound prey-
only equilibrium, any positive disease incidence shifts it to the predator-free
one, in which the disease is present, Fig. 2. This occurs provided that the
disease incidence is larger than the disease-related mortality. If the disease-
related mortality exceeds λ, then equilibrium E3 becomes unstable and the
system sets back to equilibrium E1, Fig 3.

In these transitions the value of the hunting rate b on infected has some
role. It influences the outcome of the system, since for small values of it, a
small amount of predators establishes itself in the system, see Figure 4, so
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Figure 1: The prey-only equilibrium for the purely demographic model ob-
tained for the parameter values a = 0.9, λ = 0.0, b = 0.0, µ = 0.0, e = 0.9,
m = 0.9 implying ρ = 1.11.

that the coexistence equilibrium of all subpopulations E4 is achieved; in the
same conditions, for a larger disease-related mortality instead, the system
settles down to E1 once more, even with a larger b, Figure 5. If we increase
the hunting rate on infected further, the system once again settles to the
prey-only equilibrium but this time achieving it with damped oscillations,
Figure 6. An additional increase of b leads to sustained oscillations, Figure
7, which however in the long run dampen toward E1, only more slowly. The
larger the value of b, the slower the decay rate. In these situations there is an
almost constant value for the sound prey, with the other populations almost
at vanishing levels, followed by a sudden drop caused by an epidemic, which
is in turn followed by an upsurge of predators.

All these dynamics are proper of the ecoepidemic model introduced here,
as for the underlying demographic model with no epidemic, only equilibrium
E1 is possible in these circumstances, as λ = µ = b = 0.

We now take 3−1/2 < ρ < 1. In this case the equilibrium reached by
the underlying purely demographic model is the predator-prey coexistence,
corresponding to the disease-free one, E2, in the three-dimensional model, for
the parameter values a = 1.2, λ = 0.08, b = 160.6, µ = 0.3, e = 0.9, m = 0.9
implying ρ = 0.8333, Figure 8. From this equilibrium, making m = 1.9
i.e. getting ρ > 1 we go back to E1, as the theory prescribes, since (14), or
what is the same, the second (15) is violated. This equilibrium is obtained
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Figure 2: The predator-free equilibrium for the ecoepidemic model obtained
for the parameter values a = 0.9, λ = 0.08, b = 0.0, µ = 0.03, e = 0.9,
m = 0.9 implying ρ = 1.11.
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Figure 3: Again the prey-only equilibrium for the ecoepidemic model ob-
tained for the parameter values a = 0.9, λ = 0.08, b = 0.0, µ = 0.3, e = 0.9,
m = 0.9 implying ρ = 1.11.
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Figure 4: Coexistence equilibrium for the ecoepidemic model obtained for
the parameter values a = 0.9, λ = 0.08, b = 0.06, µ = 0.03, e = 0.9, m = 0.9
implying ρ = 1.11.
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Figure 5: Once more the prey-only equilibrium for the ecoepidemic model
obtained for the parameter values a = 0.9, λ = 0.08, b = 1.06, µ = 0.3,
e = 0.9, m = 0.9 implying ρ = 1.11.
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Figure 6: Once more the prey-only equilibrium for the ecoepidemic model
obtained for the parameter values a = 0.9, λ = 0.08, b = 6.0, µ = 0.03,
e = 0.9, m = 0.9 implying ρ = 1.11.
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Figure 7: Dampened oscillations toward E1 for the ecoepidemic model ob-
tained for the parameter values a = 0.9, λ = 0.08, b = 16.6, µ = 0.03,
e = 0.9, m = 0.9 implying ρ = 1.11.
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also for a one order of magnitude smaller value of b = 16.6. From it if we
increase the disease incidence to λ = 6.8, so that the value of ρ < 1 remains
unaltered, then E2 is destabilized, but this time the system moves toward
the coexistence equilibrium E4. This occurs however with a very low value
of infected, Figure 9. Here P4 = 0.7862, I4 = 0.0031, F4 = 0.2351. From
these values, we have performed a check on the system’s behavior subject
to changes in the parameters. Variations in λ both above and below the
reference value correspond to slight changes in the equilibrium values, until
λ = 5 or nearby values, at which point the infected drop to very low values
and the system moves to the disease-free equilibrium E2. At λ = 10.9 we
have obtained very narrow limit cycles in the three dimensional space, Figure
10. They seem also to exist in a very narrow interval around this value of
λ. Changes for higher values of b do not affect much the equilibrium. Values
lower than the reference one, say around b = 14 lead to the invasion of
the disease; in fact equilibrium E4 is obtained, although with initially a low
number of infected. Around b = 6 limit cycles involving all the populations
appear, Figure 11. For much smaller values, around b = 3.5 for instance,
the equilibrium once again moves back to the predator-free equilibrium E3.
Larger values of the disease-related mortality lead to lower values of infected,
until about µ ≈ 0.9, after which essentially the disease gets eradicated. Lower
values of µ still yield the coexistence equilibrium.

The parameters appearing in ρ are a, e and m. We found that a affects
the outcome, in fact larger values, up to a = 1.5, lead to E2, still with
ρ < 1; at a = 1.8 we found limit cycles of the two dimensional healthy prey-
predators demographic subsystem, Figure 12, but in this case the parameter
ρ has dropped below the threshold, namely ρ = 0.5556 < 0.5774. Lower
values give still E4 but with higher infected levels, up to a = 1 at which
point we have ρ = 1, and this trend continues past these values. Changes in
e: higher values than the reference value lead to the disease-free equilibrium
E2, for lower values we have ρ < 1 only if e ≥ 0.75. But in decreasing the
conversion factor, the infected grow slightly, the sound prey and predators
decrease, instead. Past e = 0.75, we are outside the range of ρ that we are
exploring, but E4 is still achieved, until around e = 0.3 at which point the
system shifts to the predator-free equilibrium E3. Although outside the range
interest here, for e = 0.39 we have discovered very small limit cycles of the
whole system, Figure 13. To show that these are not dampened oscillations,
we ran the same simulation over a much larger time horizon, obtaining the
results shown in Figure 14, with the same oscillation amplitudes. We now
consider changes in m. Larger values lead to an increase in infected and a
decrease in both sound prey and predators, up to around m = 1.06 at which
point the value of ρ becomes larger than 1. A decrease of m leads to opposite
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Figure 8: Disease-free equilibrium E2 for the ecoepidemic model obtained for
the parameter values a = 1.2, λ = 0.08, b = 160.6, µ = 0.3, e = 0.9, m = 0.9
implying ρ = 0.8333.

changes and quickly to the disease-free equilibrium E2. These results are to
be expected, except perhaps the one for the reduction of healthy prey when
m increases, but it can be explained by the fact that a reduction of predators
puts less pressure also on infected and therefore the effects of the disease
might become more relevant.

The initial values used in all the above simulations are P = 0.10, I = 0.04,
F = 0.03 unless otherwise specified.

We consider now the case 0 < ρ < 3−1/2. At first we investigate the
parameters that do not change ρ. Starting from the reference values a = 1.8,
λ = 6.8, b = 16.6, µ = 0.3, e = 0.9, m = 0.9 implying ρ = 0.5556 < 3−1/2 ≡
0.5774 as noted above, we change again the parameter values. Changing λ
does not sensibly change the dynamics of the system, it is not possible via
a larger disease incidence that the disease invades the environment. Limit
cycles remain essentially the same in the healthy prey-predator subspace.
Values of b < 3.3 lead to the predator-free equilibrium E3. Higher values
of b as it should be expected do not lead to changes in the limit cycles, as
the infected are hunted at higher rate and therefore are unable to invade the
enviroment. In a similar way the system does not change under variations in
µ.

The parameter values that influence ρ do not affect much the system’s
outcome, when preserving ρ below the critical threshold value 3−1/2 = 0.5774.
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Figure 9: Coesistence equilibrium E4 for the ecoepidemic model obtained
from E2 by a larger disease incidence with the parameter values a = 1.2,
λ = 6.8, b = 16.6, µ = 0.3, e = 0.9, m = 0.9 implying ρ = 0.8333.
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Figure 10: Limit cycles in the three dimensional space for the ecoepidemic
model obtained for the parameter values a = 1.2, λ = 10.9, b = 16.6, µ = 0.3,
e = 0.9, m = 0.9 implying ρ = 0.8333.
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Figure 11: Limit cycles in the three dimensional space for the ecoepidemic
model obtained for the parameter values a = 1.2, λ = 6.8, b = 6.05, µ = 0.3,
e = 0.9, m = 0.9 implying ρ = 0.8333.
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Figure 12: Limit cycles in the two dimensional space for the ecoepidemic
model obtained for the parameter values a = 1.8, λ = 6.8, b = 16.6, µ = 0.3,
e = 0.9, m = 0.9 implying ρ = 0.5556.
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Figure 13: Small limit cycles around E4 for the ecoepidemic model obtained
with the parameter values a = 1.2, λ = 6.8, b = 16.6, µ = 0.3, e = 0.39,
m = 0.9 implying ρ = 1.9231.
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Figure 14: For the same parameter values of Figure 13, over a much wider
timespan, the oscillation amplitudes are not changed.
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Figure 15: For the parameter values a = 1.8, λ = 6.8, b = 16.6, µ = 0.3,
e = 0.9, m = 1.5143 implying ρ = 0.9348 > 0.5774 limit cycles for all the
system populations are found.

For higher values of m, namely m = 1.5143 leading to ρ = 0.9348, outside
the range for ρ that we are considering here, we find limit cycles of the
three populations, see Figure 15. Therefore the general conclusion in this
case seems to be that for ρ < 3−1/2 the two dimensional limit cycle of the
demographic submodel attracts the system’s trajectories.

6 Conclusion

The model presented here contains the new feature of prey group defense,
introduced in [2] and [3]. It is here extended in the realm of ecoepidemic
systems, to encompass also an infection spreading among the prey. The
model has the following equilibria: the healthy prey-only equilibrium, stable
if (12) holds; the disease-free point feasible for (8) and stable for (14); the
predator-free equilibrium feasible for (9) and stable for (17); and the coexis-
tence equilibrium. For the latter we have stated feasibility conditions, (19),
(20), (21), tried to discuss them analytically for what is possible, but finally
shown in the simulations that it can be attained. We have also identified
quantities that determine when respectively the disease and the predators
permanently remain in the system. The role of the key parameter ρ intro-
duced in the two-dimensional purely demographic model, [2, 3] seems to bear
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here a less important role. Only, for its values below the critical threshold
3−1/2, simulations show that the limit cycle in the healthy prey-predator do-
main is attractive also in the larger phase space in which infected prey are
present.

With extensive simulations it is found that the disease effect correspond
to a dampening of the system dynamics. This result bears some resemblance
with the one of [6]. This occurs here in the assumption that infected indi-
viduals remain isolated and are therefore captured by predators according to
the classical mass action interactions. It remains to be ascertained whether
infected that remain in the heard instead of being left behind, voluntarily or
expelled by the group, are able to provide a richer system behavior. This
will constitute the next step in the investigation.
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